ATI 301™ Stainless Steel: Austenitic (UNS S30100) ### **GENERAL PROPERTIES** ATI 301™ (S30100) is an austenitic stainless steel with a nominal composition of 17 percent chromium and 7 percent nickel. The high strengths of this grade of steel in the six available conditions or tempers, its resistance to atmosphere corrosion and its bright, attractive surface make it an excellent choice for decorative structural applications. Automobile molding and trim, wheel covers, conveyor belts, kitchen equipment, roof drainage systems, hose clamps, springs, truck and trailer bodies, railway and subway cars are some of the major applications for this versatile grade. By varying the chemical composition within the limits set by the ASTM specifications and by temper rolling, a broad range of magnetic and mechanical properties can be obtained for a variety of applications. ATI 301™ stainless steel is available as cold rolled strip, sheets, and plates from ATI. ## **CHEMICAL COMPOSITION** ## Represented by ASTM A240 and A666 | Percent by Weight Maximum Unless Range is Specified | | | | |--|--|--|--| | 0.15 maximum | | | | | 2.00 maximum | | | | | 0.045 maximum | | | | | 0.030 maximum | | | | | 0.75 maximum | | | | | 16.00-18.00 | | | | | 6.00-8.00 | | | | | 0.10 maximum | | | | | | | | | #### **CORROSION RESISTANCE** ATI 301™ stainless is resistant to a variety of corrosive media. However, the corrosion properties are not as good as the 18-8 chromium-nickel steels. Its susceptibility to carbide precipitation during welding restricts its use in many applications in favor of ATI 304 or ATI 304L alloys. #### **OXIDATION RESISTANCE** ATI 301™ alloy possesses good resistance to oxidation at temperatures up to 1550°F (840°C). At 1600°F (871°C), ATI 301™ alloy exhibits an oxidation weight gain of 10mg/cm² in 1,000 hours. Therefore, this stainless steel is not suggested for use at 1600°F or above. As the rate of oxidation is greatly affected by the atmosphere to which the metal is exposed by the heating and cooling cycle, and by the structural design, no data can be presented which will apply to all service conditions. #### **PHYSICAL PROPERTIES** The values reported below are representative for average composition in the annealed condition. Melting Range 2550-2590°F (1399-1421°C) **Density** 0.29 lb/in³ (8.03g/cm³) Specific Gravity 8.03 Modulus of Elasticity **in Tension** 28 x 10⁶psi (193 GPa)* ### **Linear Coefficient of Thermal Expansion** | Temperatur | e Range | Coefficients | | | | | |------------|---------|-------------------------|-------------------------|--|--|--| | °C | °F | cm/cm/°C | in/in/°F | | | | | 20-100 | 62-212 | 16.6 x 10 ⁻⁶ | 9.2 x 10 ⁻⁶ | | | | | 20-300 | 68-572 | 17.6 x 10 ⁻⁶ | 9.8 x 10 ⁻⁶ | | | | | 20-500 | 68-932 | 18.6 x 10 ⁻⁶ | 10.3 x 10 ⁻⁶ | | | | | 20-700 | 68-1292 | 19.5 x 10 ⁻⁶ | 10.8 x 10 ⁻⁶ | | | | | 20-871 | 68-1600 | 19.8 x 10 ⁻⁶ | 11.0 x 10 ⁻⁶ | | | | Since the expansion coefficient is higher than that of many other metals and alloys, this characteristic should be considered in the design of equipment involving ATI 301™ alloy and other materials of construction. ^{*} In the cold worked condition, the modulus is lowered. ### **Thermal Conductivity** | Tempera | ture Range | W/m•K | Btu/ft ² / | | | |------------------|------------------|--------------|-----------------------|--|--| | °C | °F | VV/IIIPK | hr/° F/ft | | | | 20-100
20-500 | 68-212
68-932 | 16.3
21.4 | 9.4
12.4 | | | | °C | °F | J/kg•K | Btu/lb/°F | | | | 0-100 | 32-212 | 500 | 0.12 | | | #### **Magnetic Permeability** Properly annealed ATI 301™ alloy is completely austenitic and magnetic permeability is 1.02 maximum at 200H. Cold working promotes the formation of martensite and the magnetic permeability is increased. The amount of martensite formed depends on the amount of cold rolling, temperature of cold rolling, and composition. Figure 1 shows the increase in magnetic permeability with cold rolling at room temperature. The composition of the steels used in these determinations are: | Steel | С | Mn | Si | Cr | Ni | N | |-------|------|------|------|-------|------|-------| | Α | 0.12 | 1.57 | 0.56 | 17.51 | 7.52 | 0.043 | | В | 0.10 | 0.67 | 0.33 | 17.19 | 7.20 | 0.035 | #### **Electrical Resistivity** | °C | °F | Microhm-cm | Microhm-in. | |-----|------|------------|-------------| | 20 | 68 | 72 | 28.3 | | 100 | 212 | 78 | 30.7 | | 200 | 392 | 86 | 33.8 | | 400 | 752 | 100 | 39.4 | | 600 | 1112 | 111 | 43.7 | | 800 | 1472 | 121 | 47.6 | | 900 | 1652 | 126 | 49.6 | ## **MECHANICAL PROPERTIES** ATI 301™ alloy is used in the annealed and cold-rolled conditions. In the work-hardened condition, ATI 301™ alloy develops higher tensile strength than the other stable austenitic grades. Minimum properties for plate, sheet and strip per ASTM A240 and A666 follow. ## Minimum Room Temperature Mechanical Properties, ASTM A240and A666 Specifications | Condition | | ensile
ngth, Min.
(MPa) | | % Yield
gth, Min.
(MPa) | Elong. In
2" (50mm)
%, Min. | |-----------|-----|-------------------------------|-----|-------------------------------|-----------------------------------| | Annealed | 75 | (515) | 30 | (205) | 40 | | 1/4 Hard | 125 | (862) | 75 | (517) | 25 | | 1/2 Hard | 150 | (1,034) | 110 | (758) | 18* | | 3/4 Hard | 175 | (1,207) | 125 | (931) | 12* | | Full Hard | 185 | (1,276) | 140 | (965) | 9* | ^{*}Value shown for thickness greater than 0.015 in. (.038mm). Data are typical, are provided for informational purposes, and should not be construed as maximum or minimum values for specification or for final design, or for a particular use or application. The data may be revised anytime without notice. We make no representation or warranty as to its accuracy and assume no duty to update. Actual data on any particular product or material may vary from those shown herein. TM is trademark of and ® is registered trademark of ATI Properties, Inc. or its affiliated companies. ® The starburst logo is a registered trademark of ATI Properties, Inc. © 2014 ATI. All rights reserved. Allegheny Technologies Incorporated 1000 Six PPG Place Pittsburgh, PA 15222-5479 U.S.A. www.ATImetals.com The properties can be controlled to a certain extent by proper balance of chemical composition. Figure 2 shows the effect of cold rolling on the tensile properties of a representative ATI 301™ composition. Figure 3 shows stress-strain curves and yield strength of annealed and 1/4 hard ATI 301™ stainless. Cold rolled ATI 301™ stainless shows slightly anistropic properties in the direction of cold rolling (longitudinal) and at right angles to this direction (transverse). The difference becomes quite pronounced in compression. A more isotropic material can be produced by a stress relieving heat treatment in the 700 to 1000°F (371-538°C) temperature range for a period of five minutes to five hours. Use of lower temperature and shorter times minimizes carbide precipitation. The table below illustrates the as-rolled and stress-relieved mechanical properties of ATI 301™ alloy in tension and compression. | | | | Ten | sion | | | | | |----------------------|---|----------------------------------|---|----------------------------------|---|--|--|--| | | | Long | itudinal | Transverse | | | | | | Temper | Condition | .2% Y.S.
Ksi (MPa) | Elastic
Modulus
10 ⁶ psi (GPa) | 0.2% Y.S.
Ksi (MPa) | Elastic
Modulus
10 ⁶ psi (GPa) | | | | | Annealed
1/4 Hard | As annealed
As rolled
Stress relieved | 36 (248)
80 (552)
77 (531) | 31.0 (214)
28.0 (193)
28.7 (198) | 36 (248)
84 (579)
79 (545) | 30.6 (211)
28.6 (197)
27.0 (186) | | | | | 1/2 Hard | As rolled | 122 (841) | 26.8 (185) | 123 (848) | 28.1 (194) | | | | | | Stress relieved | 128 (883) | 27.9 (192) | 130 (896) | 28.6 (197) | | | | | 3/4 Hard | As rolled | 142 (979) | 25.8 (178) | 145 (1,000) | 27.5 (190) | | | | | | Stress relieved | 155 (1,069) | 27.3 (188) | 155 (1,069) | 28.8 (199) | | | | | Full Hard | As rolled | 160 (1,103) | 25.2 (174) | 163 (1,124) | 28.4 (196) | | | | | | Stress relieved | 175 (1,207) | 28.4 (196) | 181 (1,248) | 30.5 (210) | | | | | | | | Compr | ession | | | | | | Annealed
1/4 Hard | As annealed
As rolled
Stress relieved | 38 (262)
50 (345)
73 (503) | 30.6 (211)
28.2 (194)
28.8 (199) | 38 (262)
91 (627)
84 (579) | 30.3 (209)
28.2 (194)
30.6 (211) | | | | | 1/2 Hard | As rolled | 90 (621) | 27.5 (190) | 142 (979) | 27.5 (190) | | | | | | Stress relieved | 111 (765) | 29.2 (201) | 144 (993) | 29.8 (205) | | | | | 3/4 Hard | As rolled | 100 (690) | 26.5 (183) | 170 (1,172) | 27.9 (192) | | | | | | Stress relieved | 133 (917) | 27.5 (190) | 176 (1,213) | 29.5 (203) | | | | | Full Hard | As rolled | 115 (793) | 24.6 (170) | 191 (1,317) | 29.4 (203) | | | | | | Stress relieved | 169 (1,165) | 27.7 (191) | 209 (1,441) | 29.6 (204) | | | | Data are typical, are provided for informational purposes, and should not be construed as maximum or minimum values for specification or for final design, or for a particular use or application. The data may be revised anytime without notice. We make no representation or warranty as to its accuracy and assume no duly to update. Actual data on any particular product or material may vary from those shown herein. TM is trademark of and ® is registered trademark of ATI Properties, Inc. or its affiliated companies. ® The starburst logo is a registered trademark of ATI Properties, Inc. © 2014 ATI. All rights reserved. Allegheny Technologies Incorporated 1000 Six PPG Place Pittsburgh, PA 15222-5479 U.S.A. www.ATImetals.com ### **Typical Elevated Temperature Tensile Properties** | Temp | erature | | Tens | ile Stre | ngth, Ks | i (MPa) | (MPa) Yield Strength, 0.2 | | | | th, 0.2% Offset, Ksi (MPa) | | | % Elongation in 2" (50mm) | | | |------|---------|-------|-------|----------|----------|---------|---------------------------|------|--------|------|----------------------------|-------|--------|---------------------------|-------------|----------| | °F | (°C) | Anne | aled | 1/8 | Hard | 1/2 | Hard | Ann | ealed | 1/8 | Hard | 1/2 | Hard | Annealed | 1/8
Hard | 1/2 Hard | | Room | Temp. | 105.0 | (724) | 129.0 | (889) | 165.0 | (1138) | 40.0 | (276) | 73.0 | (503) | 112.0 | (772) | 55.0 | 43.5 | 28.5 | | 400 | (204) | 80.0 | (552) | 90.6 | (625) | 127.0 | (876) | 22.0 | (152) | 61.5 | (424) | 106.0 | (731) | 46.0 | 23.0 | 9.0 | | 600 | (316) | 70.4 | (485) | 86.2 | (594) | 122.7 | (846) | 19.4 | (134) | 59.8 | (412) | 95.2 | (656) | 40.0 | 20.0 | 6.5 | | 800 | (427) | 67.2 | (463) | 81.7 | (563) | 116.9 | (806) | 19.5 | (134) | 54.7 | (377) | 85.5 | (590) | 39.0 | 17.5 | 7.0 | | 1000 | (538) | 58.2 | (401) | 69.4 | (479) | 78.0 | (538) | 18.3 | (126) | 51.2 | (353) | 67.3 | (464) | 34.0 | 16.5 | 7.0 | | 1200 | (649) | 40.9 | (282) | 51.0 | (352) | 57.5 | (396) | 15.4 | (106) | 40.0 | (276) | 48.0 | (331) | 36.0 | 20.0 | 10.0 | | 1400 | (760) | 29.6 | (204) | 36.0 | (248) | 35.0 | (241) | 14.4 | (99.3) | 27.0 | (186) | 31.0 | (214) | 30.0 | 17.0 | 10.0 | | 1600 | (871) | 15.8 | (109) | 19.4 | (134) | 16.4 | (113) | 9.5 | (65.5) | 15.4 | (106) | 13.9 | (95.8) | 29.0 | 15.0 | 12.5 | #### **Typical Low Temperature Tensile Properties** | Condition | Test
Temperature
°F (°C) | Yield Strength
0.2% Offset
Ksi (MPa) | Ultimate Tensile
Strength Ksi
(MPa) | % Elongation in 2"
(50 mm) | Notched to
Unnotched
Tensile
Strength Ratio | |------------|--------------------------------|--|---|-------------------------------|--| | Annealed | 78 (25) | 40 (276) | 105 (724) | 60 | - | | | 32 (0) | 43 (297) | 155 (1,069) | 53 | - | | | -40 (-40) | 48 (331) | 180 (1,241) | 42 | - | | | -80 (-62) | 50 (345) | 195 (1,351) | 40 | _ | | | -320 (-196) | 75 (517) | 275 (1,896) | 30 | - | | 1/4 Hard | 78 (25) | 95 (655) | 150 (1,034) | 54 | _ | | | 32 (0) | 98 (676) | 170 (1,172) | 46 | _ | | | -40 (-40) | 101 (696) | 188 (1,296) | 38 | _ | | | -80 (-62) | 105 (724) | 205 (1,413) | 37 | _ | | | -320 (-196) | 116 (800) | 290 (1,999) | 25 | _ | | 3/4 Hard | 78 (25) | 171 (1,179) | 190 (1,310) | 17 | 1.05 | | | -100 (-73) | 154 (1,062) | 224 (1,544) | 19 | 0.96 | | | -320 (-196) | 193 (1,331) | 290 (1,999) | 20 | 0.90 | | | -423 (-253) | | 317 (2,186) | 14 | 0.92 | | Full Hard* | 78 (25) | 183 (1,262) | 205 (1,413) | 6 | 1.01 | | | -320 (-196) | 215 (1,482) | 302 (2,082) | 20 | 0.90 | | | -423 (-253) | 250 (1,724) | 340 (2,344) | 15 | 0.87 | Typical short time high temperature tensile properties of ATI 301[™] alloy in the annealed and cold-rolled state are shown in the table above. The high temperature short-time tensile properties can be used for design purposes only up to 700 or 800°F. Above this temperature, design is based on creep and stress-rupture data. There is no significant difference in the creep strength of ATI 301™ alloy and the other 18-8 grades and the data given for these grades can also be used for ATI 301™ alloy. Stress-rupture and creep-strength curves are shown in Figures 4 and 5. Typical low temperature properties for ATI 301™ alloy are given above. Data are typical, are provided for informational purposes, and should not be construed as maximum or minimum values for specification or for final design, or for a particular use or application. The data may be revised anytime without notice. We make no representation or warranty as to its accuracy and assume no duty to update. Actual data on any particular product or material may vary from those shown herein. TM is trademark of and ® is registered trademark of ATI Properties, Inc. or its affiliated companies. ® The starburst logo is a registered trademark of ATI Properties, Inc. © 2014 ATI. All rights reserved. #### **Hardness** Typical hardness values for annealed and cold-rolled ATI 301™ alloy are given in the following table: | Temper | Brinell Hardness | Rockwell
Hardness | |-----------|-------------------------|----------------------| | Annealed | 165 | 85 Rb | | 1/4 Hard | 255 | 25 Rc | | 1/2 Hard | 297 | 32 Rc | | 3/4 Hard | 342 | 37 Rc | | Full Hard | 382 | 41 Rc | ## **Impact Resistance** Annealed austenitic stainless steels exhibit high resistance to impact even at low temperatures. This property, in combination with strength and fabricability, has led to their use in cryogenic applications. Typical impact properties for ATI 301™ alloy are shown below. | Tempo | erature | | Notch Energy
orbed | | | |-------|---------|-------------|-----------------------|--|--| | °F | °C | Foot-pounds | Joules | | | | 75 | 23 | 110 | 150 | | | | -100 | -73 | 110 | 150 | | | | -320 | -196 | 110 | 150 | | | ## **Fatigue Strength** The endurance limit of annealed ATI 301™ alloy is 30-45 percent of the tensile strength. Cold rolling increases the endurance limit as compared with annealed material. Stress relieving increases the endurance limit of cold rolled material. Data are typical, are provided for informational purposes, and should not be construed as maximum or minimum values for specification or for final design, or for a particular use or application. The data may be revised anytime without notice. We make no representation or warranty as to its accuracy and assume no duty to update. Actual data on any particular product or material may vary from those shown herein. TM is trademark of and @ is registered trademark of ATI Properties, Inc. or its affiliated companies. ® The starburst logo is a registered trademark of ATI Properties, Inc. © 2014 ATI. All rights reserved. Allegheny Technologies Incorporated 1000 Six PPG Place Pittsburgh, PA 15222-5479 U.S.A. www.ATImetals.com Typical endurance limits for ATI 301™ alloy are shown in the following table: | | Endurance Limit | | | | | |-----------|-----------------|-------|--|--|--| | Condition | Ksi | MPa | | | | | Annealed | 35 | (241) | | | | | 1/4 Hard | 44 | (303) | | | | | 1/2 Hard | 55 | (379) | | | | | Full Hard | 80 | (552) | | | | #### **HEAT TREATMENT** ### **Forging Treatment** Initial: 2000-2200°F (1093-1204°C) Finishing: 1700°F (927°C) ### **Annealing Temperature** 1850-2050°F (1010-1121°C) The primary purposes of annealing are to remove the stresses, recrystallize the structure if the material has been previously cold worked, and to take the carbides into solution. Rapid cooling through the carbide precipitation range is necessary to keep the carbides into solution. For thin sections, air cooling is sufficient for this purpose while heavier sections have to be water quenched. ### Structure When properly annealed, ATI 301™ stainless is austenitic. It is possible that small quantities of delta ferrite are present. Cold rolling promotes the formation of martensite and exposure in the 800-1500°F (427-816°C) range results in grain boundary carbide precipitation.